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Abstract. With each second-order differential equation Z in the evolution space J'{(M,41)
we associate, using a new differential operator Az, four families of vector fields and 1-forms on
JY{(My.1) providing a natural set-up for the study of symmetries, first integrals and the inverse
pioblem for Z. We analyse the relations between the four families pointing out the symmetric
structure of this set-up. When a Lagrangian for Z exists, the bijection between dynamical
and dual symmetrics is included in the whole context, suggesting the corresponding bijection
between dual-adjoint and adjoint symmetries. As an application, we show how some results of
the inverse problem can be framed natrally in this geometrical context.

1. Introduction

The problem of the relations between symmetries, first integrals and the existence of a
Lagrangian for a given second-order differential equation (SODE) Z defined on the evolution
space J'(M,41) has been discussed in the last 15 years by several authors, using the
techniques of modern differential geometry (see, for example, [Sar81], [Prig3], [SCC84],
[MMS86], [SCCB7], [CM89], [CLMB89], [SPC90]). In particular, in [SCC87], [CM89],
[CLM89] and [SPCS0] two subsets X, M, of the module of vector fields X (J'(Mp41))
and two subsets A7, M}, of the module of 1-forms X *(J1(My41)) were introduced. These
subsets turn out to be particularly useful in handling dynamical and adjoint symmetries
of the SODE, and provide a natural background for the study of the inverse problem. For
example (see, e.g., [SPCY0]) the sets A; and A7 give a natural environment where the
concepi of self-adjointness of a SODE (strictly related to the existence of a Lagrangian) can
be framed.

After a brief section, where for convenience of the reader and in order to fix notation
we recall the principal definitions and properties of a SODE, in section 3 we introduce a new
differential operator Az, defined using the almost product structure A on J!(M,+;) induced
by Z and the Lie derivative £z. This operator allows a useful characterization of the sets
Ay, Xy, My and M. Moreover the operator Az suggests the introduction of a new type
of symmetry (called duaI adjoint), bearing a relation to dynamical symmetries analogous to
that between dual and adjoint symmetries.

We show that a necessary condition for a vector field X to be a dynamical symmetry of
Z is X € A,, and a necessary condition for X to be a dual-adjoint symmetry isXeM,.
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In both cases, the sufficient condition takes the form of a ‘Jacobi type’ equation on X,
which is exactly the same for dynamical and dual-adjoint symmetries. The case of dual and
adjoint symmetries is shown to mirror that of dynamical and duai-adjoint symmetries, but
with a different ‘Jacobi type’ equation. Then we prove that the type-(1, 1) tensor field A
induces two bijections, one between dynamical and dual-adjoint symmetries, and the other
between dual and adjoint ones.

In section 4 we analyse the case when a Lagrangian for Z is given. It is well known that
the presence of a Lagrangian induces a bijection between (equivalence classes of) dynamical
symmetries and doal symmetries based on the interior product with the Poincaré—Cartan
2-form. The specular situation described above suggests the introduction of a suitable 2-
form, strictly related to the Poincaré—Cartan 2-form, allowing the construction of a bijection
between (equivalence classes of) dual-adjoint symmetries and adjoint symmetries. We show
that the algorithm is naturally enclosed in the geometrical context described above.

In section 5, as an application, we restate some results regarding the inverse problem that
find their natural context in terms of the sets A, M, A, M?. Moreover, we introduce a
differential operator § defined in terms of the exterior differentiation 4 in a way analogous
to the one used to define Az. Using §, we present some ‘parallel’ statements that are the
natural counterpart of the previous ones in the symmetric construction determined by the
operator Az.

2. Preliminaries

The evolution space of a mechanical system with a finite number of degrees of freedom
may be identified with the first jet-extension J!(M,.1) of 2 (z + 1)-dimensional manifold
M4y globally fibred over the real line R, so that we have

T (Mps1) > Mpya — R

A system of second-order differential equations (SODE) may be represented by a vector field
Z such that

(Z,dr)=1 (Z,&)=0 i=1,...,n

where w' = dg' — ¢'dt are the contact 1-forms of J'(M,41). Using fibred coordinates
(t,q,G) on J'(Mnt1), the vector field Z locally takes the form

3 d ]
—_ Z‘_
Z = + §'— 5 + 3

so that its integral curves are the first prolongations of the solutions of the system of
differential equations

i =2'0q,9).

Later on we shall use as local basis of the module X(J!(M,41)) of the vector fields over
JU (M, 1) the basis {Z, 55, &}, . and, for the module X*(J! (M) of the 1-forms
over J1(M,.,), the dual basis {d?, &, u"},-=;,__,,,,, where vl = Lzof =dgt — Zidt.

The fibration = : JY{(M,1) — My determines a subbundle V(JY{(M,41)) of
T(J1(Mp41)) given by the totality of vectors vertical with respect to #. The submodule
Y of the vertical vector fields is then spanned Iocally by {af; Y., For later use, for
a given SODE, we also mtroduce the submodule V' of the weakly vemeal vector fields,

spanned locally by {Z, Fr },_1
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In an analogous way, we can introduce the submodule 7{ of the horizontal I-forms,
spanned locally by the contact forms {w'};=1 .. ., and the submodule H’ of ‘weakly’
horizontal 1-forms, spanned locally by {dz, @'}i=y....s-

It is well known that the space J1(M,.,.) carries a vertica! endomorphism, i.c. a globally
defined type-(1, 1} tensor field given, in local coordinates, by

a

S= E_z Qo' (1
The type-(1, 1) tensor field S=LzSisan f(3, ~1) structure for J1(M,41), i.e. atype-(1, 1)
non-null tensor field of constant rank satisfying $3 = 8 =0 (see, for example, [ALRO0]).

Using local coordinates, the tensor § takes the form
s ow + (v — Eu
T ag g 3g*

and, in particular, we have that

=1 — Z®ds

Remark. As is shown, for example, in [dLR90] and [MP94], the f(3, —1) structure allows
the introduction of some other structures on J*(M,41) (connection and covariant derivative,
horizontal distribution of vector fields, vertical distribution of 1-forms, . ..). In order to keep
the arguments as straightforward as possible, we shall avoid the introduction of different
bases, operators, etc, and choose to work in the simpler context described above.

3. The symimetries of a SODE

The vertical endomorphism S allows us to introduce an ‘almost product’ structure 4 on
JY(My1) (e type-(1, 1) tensor fields obeying the condition A% = [), given by

A=S8 + Z@d:.

Note that the tensor § — Z ®d? is also an ‘almost product’ structure. It could be substituted
for A throughout the following discussion, but this would make no essential difference.

For notational convenience, we need to distinguish between the tensor field, for which
we shall use the standard typeface A, and the associated operator on X (J'(M,4,)) and
X*(J1(Mp41)), for which we shall use the bold italic A.

The operator A determines in an obvious way automorphisms of the modules
X(I (Mpy1)) and X*(7'(M,p1)). Tt is easy to show that the restrictions of these
automorphisms to the submodules spanned by Z and d¢, and the submodules V, H, V', H’
are automorphisms, too.

We extend the action of A to the entire tensor algebra of J'(M,y1) by requiring that
the conditions '

Af)=f Y f € C®(I (Myp1)) (2)
AU W) =(AU)® (AW) YU, W tensors over J'(Mpp). (3

be satisfied. The presence of the automorphism A allows the following.

Definition 3.1. We define the operator .4z acting on tensor fields over J' (M, ) as

Az=A Lz A
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Lemma 3.]. The operator .Az has the foliowing properties:

e Az is a derivation of degree 0 commuting with contractions, i.e. ‘v’ X e X (TN (M),
n form over J!(M, ;) we have

Az (Xdn) = (AzX) Iy + X1 (Azn)

o Azf=2Z(f) Y feCOI (Mpun1));
o Lz=A Az A.

Proof. The first statement follows from a straightforward calculation. The second ome
is a consequence of equation (2), while the thu'd one is a consequence of the condition
AZ =1. C

For later use, we e:valuatc the effect of the operators A, £z, Az on the generic vector
field X =x0Z+x' 35 2 +y 357 2nd the generic I-form o = aodt + a0t + by on J (Mia).
We have

.8 Y ARG
W - S S i Ic v
AXY=x"Z —x o + (y 23 ) 27 (4a)
YAl
Ale) =apdt — | & -l-bkg o'+ byt (4b)
LzX = Z(xNZ + (Z() — y7) aiq]. + (Z(yf) —x"‘T y"az ) % (4c)
azxy 3zZ*\ |
Lzo = Z(ao)dt'l' Z(a;) +bk3_q' w + | Z(b;) +a; +b{;a—q‘ v (4d)
AzX = Z:xNZ + (Z(x") +y —x"gfk-) —3-
dg* } a4
g2 (22) - 2] 2
+{Z(” g [z(aq'k) |
(4e)
az* az* azk7 . ;
Azo = Z(agydt +{ Z(@)+ as—+ 00 | Z| | — = | & +[Z) —alv
ag’ gt oq’

“H

The first result about the operator Az, showing that the latter does not introduce a new
F(3, —1) structure, is the following theorem.

Theorem 3.2. Let Z be a SODE § the tensor field of equation (1). Then
AzS§=-8.
Proof. 'We have, using definition 3.1,

AzS=(A Lz A)S=(A Lz A) (i®a))

=ALz (—ﬂ ®wf) =—AS
ag°
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=—A i@vf_ i.}_azk d @ o
=7 ag ag " ag agr )Y

E LN 8 .
-l e(r-5)-mes] -
) (W

The operators Lz and Az allow the introduction of two subsets of X (J'(M,1)) and
two subsets of X*(J1(M,1)), defined by

X, ={X e X(I (M)l X = AgV; V eV} (5a)
M, ={Xe X (M) X=LzV. V eV} )
Xy ={a e X' M) @ = LB, peH] o)
M ={a e X' (Mus1)| @ = AzB, BeH'}. (5d)

Taking into account eqﬁations (4), the local expressions for the elements of the four spaces
are the following:

XeX, & X=Az (x°Z+xi-jr)
agt

2

=ZENHZ 42—
aq!

. a
+Z(XI)F (6a)
q
0 ; 8
XEMZ = X=,CZ xZ-}-x—a—;
: q

: ; Az 8
=Z(NZ -5 — e
% xaq1+(zcx) x aq.k)aé, (65)

@€ Xy & o=Lz(ad+a0)
= Z(ap)dt + Z(a)e' + apt (6c)

eeM., & a=Az (aodt-f-a,-m")

: aZk\ /
= Z(agp)dt + (Z(a,-) + aka—cj") w —an. (6d)

The following theorem gives a characterization of the spaces X, Mz,-.«'\:';, M.

Theorem 3.3. Let X € X(J'(M,;)) be a vector field, and o € X*(J(M,,1)) be a 1-form.
Then:

XeX, & LzXeV
XeM, & AzXeV
aed; & AzaweH

veEM, & Ly € H'.

Proof. Using equations (4), (6), the proof reduces to a straightforward calculation. d
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Remark. The sets X, X were introduced by Sarlet et al [SCC84], while the sets M, M}
were introduced by Canfiena, Lopez and Martinez [CM89], [CLMS89], in slightly different
contexts and ways. However, the local expressions for the elements of A, M, &7, M,
presented in [SCCB84], [CM89] and [CLMS89] are equal, or at least quite similar, to those
of equations (6), so we have adopted the same notation.

Definition 3.2, Let Z be a given SODE, X & X(J'(M,y1)) a vector field and & «
X*(JY(M,p11)) 2 1-form. Then

X is a dynamical symmetry for Z if £zX = hZ, h € C®T N Mps1));
X is a dual-adjoint symmetry for Z if AzX =hZ, b € C°(J (My11));
¢ is a dual symmetry for Z if Lz = hdt, b € CR(TN (Mps1));

e is an adjoint symmetry for Z if Aza = hdt, b € C®(JTV (M, 1)),

Using definition 3.2, and equations (4)—(6), a §traightfonvard calculation shows that the
condition for a vector field X = x%Z + x* 32—; +y 52:; to be a dynamical symmetry for Z is
equivalent to the two conditions X € A, and

YA aZ!
¢ & & —_
Z[Z(NH] - 2(x )@E—x a—q—k_o. N
In a similar way, it may be seen that X is a dual-adjoint symmetry if and only if X € M,
and the components x* obey equation (7).

Moreover, a 1-form & = agdt + a;00' + bV is a dual symmetry if and only if o € M,

and

8z*
while ¢ is an adjoint symmetry if and only if & € X7} and the components b; obey equation
(8).

Equations (7} and (8) are the ‘Jacobi-type’ equations we referred to in section 1. Note
that equation (8) is precisely the characterization of the adjoint symmetries as presented,
for example, in [SCC84].

To prove one of the main resuits of this paper, we need two lemmas.

Lemma 3.4. The operator A gives a bijection between A, and M, and between X and

Proof. We have that
XeX,=>LzXeV = (AAzA)X eV =2 AzAX eV = AX e M,

where we have used the fact that A is an automorphism of V. In the same way we have
that:

XeM,=>AzX eV = (ALzA)X eV = LzAX eV =2 AX e X,.

The first statement follows from A% = %. The statement about 1-forms can be proved in
the same way. O
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Corollary 3.5. Given a vector field X, the following conditions hold:

LzX e Mz < Az AX e .JC’Z
LzXeX, & AzAXeM,
AzX e M, & LzAX e X,
AzX € X, < LzAX € M,

and analogous conditions hold for a 1-form o .

Lemma 3.6. "We have that

LzAzX eV & AzlzXe)
LgAzaeH & AglzaeH.

Proaf. From equations (4), the condition £z.45X € V' is equivalent to

LAz ; 8Z: 3zt
(Z(x)+y —x* 2 k)—Z(y)+x"|:Z(a—qk) - a_qk]=o

while the condition AzLzX € V' is equivalent to

: 3zt YA az
k y k =
Z[Z&)—y ]-I—Z(y)—x PPty —-[2G65 -y ] 37 =
so we have the first statement. The second one can be proved analogously. |

Now we can prove the following theorem.

Theorem 3.7. Let Z be a SODE and X = x°Z + x‘ a + ¥'35 be a vector field over
J1(My.1); the following conditions are equivalent:

{1} X is a dynamical symmetry for Z;

)X e X, and LgX € &);

(3) AX € M, and Az(AX) € M,;

(4) AX is a dual-adjoint symmetry for Z;

(5) AX € M, and Lz(AX) € M,;

(6) X € X, and AzX € X,.

Proaof.
{ = 2. If X is a dynamical symmetry, then Lz X = #Z € V¥, and then X € &,. Moreover
we have

LzLzX)=LzhBY=ZR)Z €V,
and, using the characterization of X, we can conclude this part.
2 = 3. This follows immediately from lemma 3.4 and corollary 3.5.
3= 4. Setting ¥ = AX =§°Z + &' + 7' %, the conditions for ¥ to be a dual-adjoint
symmetry are

, i 7z
ZEY + 7 —sk—é— =0

9Z\ 8zl ®
iy _ gk Rl _ | =
2 E[z(aék) aqk}‘
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In view of equations (4), the condition ¥ € M, equivalent to AzY¥ € V', implies the first
equation of (9). Moreover the condition AzY e M, implies that

0 iy _ gk 3Z'y  azi\] & ,
4z{zee 2+ 200 -8 (2(3) - )| 5 ev

from which we obtain the second equation of (9).

4=>35 Setting Y = AX =£°Z + 5,—“'%,- + ”ia_?F’ we have AzY = hZ e V', whence
Y € M,. Moreover we also have

LzAzY = Lz(hZ) e V.
Applying lemma 3.6, we obtain AzLzY € V', and s0 £zY € M.
5 = 6. It is sufficient to apply lemma 3.4 and corollary 3.5.
6 = I. The conditions for X to be a dynamical symmetry are

ZGxh -y =0
; CYAN VA (10
200~ x5 Vg =0

In view of equations (4), the condition X € A, equivalent to £zX € V', implies the first
equation of (10). Moreover the condition AzX € &, equivalent to £z.4zX € V', implies,
using lemma 3.6, that 4zLzX € V'. Then

; YAd 3Zi\ 8
0 Zvy — k22 kE= Y B 4
AZ[Z(x )Z+( ¥)—=x Py y 34") aéi}ev
from which we obtain the second equation of (10} O

Theorem 3.8. Let Z be a SODE and ¢ = apdt + q; + b;v! be a 1-form over 7'M, .1);
the following conditions are equivalent:

(1) & is an adjoint symmetry for Z;
(2) e A7 and Lz € AT

(3) Ax € M}, and Az(Aa) € M
(4) Aw is a dual symmetry for Z;
(5) A € M}, and Lz(Ax) € M};
6) x € &, and Aga € A,

Proof. The proof follows the same lines as the previous one, and is left to the reader. O

4. The symmetry of the symmetries

It is well known (see, for example, [SCCR7], [CM89]) that the knowledge of a regular
Lagrangian for the SODE Z, i.e. a function L &€ C®(J!(M,41)) such that the equations

aL aL

Zi—) — —=0 (1)
aq ag*

determine the SODE uniquely, induces a bijection between (equivalence classes of) dynamical

symmetries and dual symmetries.

We say that two dynamical symmetries Xy, X, are equivalent if Xy — X is a multiple of
Z, it is known (see, for example, [SPC90]) that in each equivalence class there is an element
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X such that £zX = 0. Given a regular Lagrangian L, we can construct the Poincaré—Cartan
I-form & and the corresponding Poincaré—Cartan 2-form £2, of maximum rank, defined ag

é —aLw"+Ldt Q2 =db
Using the condition £z8 = 0 it is easy to show the following known result.

Theorem 4.1. The application €2 : AT (Mppq)) — A*(J1 (M) defined by X ~~
X_1Q maps every dynamical symmetry of Z into a corresponding dual symmetry.
- Moreover, for every dual symmetry o there exists a unique equivalence class of dynamical
symmetries [X] such that X 1Q =a V X € [X].

In our context, we can state a parallel theorem regarding dual-adjoint and adjoint
symmetries. To reach this aim, we need the following lemma.

Lemma 4.2. 'We have
X1 = A[(AX)1(Am)] Y X € X(J (M) ¥ 7 form over J'(Mpyo).

Proof. A straightforward calculation shows that, ¥ X € X(J!(M,+1)), the operator X 14
such that

X_lan = A[(AX)I(An)] v 5 form over J!(Mj.1)

is an antiderivation of degree —1. Then it is sufficient to show that the operators X_|
and X_| 4. act in the same way on functions and on 1-forms (see, for example, [dLR90]).
The actions on functions are both identically zero. About the actions on 1-forms, given
X=xZ +x"%,r +y"aié. and 5 = godt + a;&0* + b;v', we have

’ 7 ] - 878\ 9
— 0 — ‘._. L k_ —
X_lAn-A{[x Z—x 3 ‘.+(y x 8"‘) B'E] J [aodt

azZx\ 3
— (a,- +bk3_§?) oy —i—b,-ui]} =X_In.

a

We say that two dual-adjoint symmetries X, X, are equivalent if X — X is a multiple _
of Z, and we have that in each equivalence class there is an element X such that AzX = 0.
Then we have the following theorem. 7 ) -

Theorem 4.3, Let §& be the Poincarg—Cartan 2-form determined by the Lagrangian L, and
define 2 = AQ. Then © = —%, and the application 2 : X(J' (Mp41)) = X*(J{(Mpi1))
defined by X ~ X_JQ maps every dual-adjoint symmetry of Z into a corresponding adjoint
symmetry. Moreover, for every adjoint symmetry o there exists a unique equivalence class
of dual-adjoint symmetries [X] such that X I = ¢ V X € [X].
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Proof. The fact that Q = —Qisa straightforward calculation. Then £2 has maximum rank
and the kernel of the map _I€2 is generated by Z. Now, given a dual-adjoint symmetry X,
we can suppose AzX = 0. Then consider the 1-form o = X_1$2. We have

Aza = Ag (X1Q) = (AzX) JQ + X.J (42Q) = X J (ALzQ) =0.

Conversely, given an adjoint symmetry «, we can consider X, such that X, [Q = e.
We have already shown that such an X, always exists and that it is determined uniquely
up to a term of type -Z. Then we have

0= Az(@) = Az (X.JQ) = (AzX,) 1@ + Xol (429) .
Since AzQ = ALzQ =0, we obtain (AzX,) 12 =0, so that AzX, = hZ. ad

We conclude this section with the following theorem.

Theorem 4.4. Given a SODE Z, the diagram

A
{Dynamical symmetries} =  {Dual symmetries}

A tA (12)
{Dual-adjoint symmetries} = {Adjoint symmetries}
Jg

is commutative, where the arrows == indicate bijections up to equivalence classes.
] P g

Proof. It is sufficient to show that, starting from an element in one corner of the diagram,
we can reach the element in the opposite corner in both ways, obtaining the same element.

Given a dynamical symmetry X, the 1-foom « = X I is a dval symmetry and
A (X_1Q) is an adjoint symmetry. On the other hand, starting from X, we have that
AX is a dual-adjoint symmetry and (AX)_I is an adjoint symmetry. We claim that the
two adjoint symmetries are the same. In fact, using lemma 4.2, we have

(AX)1Q = A {[A(AX)] I [A(AQ)]} = A(X1Q).

Given a dual-adjoint symmetry X, the proof that (AX)_1Q and A (XJﬁ) are the same
dual symmetry is analogous to the previous one, and is left to the reader,

Given a dual symmetry o, Aca is an adjoint symmeiry, and the (equivalence class of)
vector field(s) X 4, defined by the condition X 4, |Q = Awx is a dual-adjoint symmetry.
On the other side, starting from o, we have that the (equivalence class of) vector field(s)
X, defined by the condition X, 12 = & is a dynamical symmetry, so that AX, is a dual-
adjoint symmetry. We claim that the two dual-adjoint symmetries coincide. In fact, using
lemma 4.2, we have

(AX,) 10 = A {[A(AX)] I [AADQ)]} = A (X.1Q) = Ac

and then AX, and X4, belong to the same equivalence class of dual-adjoint symmetries.

Given an adjoint symmetry o, the proof that X 4., defined by the condition X 4,12 =
Aw, and X,, defined by the condition X, = w, are in the same class of dynamical
symmetries is analogous to the previous one, and is once again left to the reader. a
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5. The parallel theorems

The symmetric structure of the diagram (12) suggests the formulation of new theorems
transferring to the lower part of the diagram already known results regarding the upper
part. An example of this parallelism has already been given in the description of the
correspondence between dual-adjoint and adjoint symmetries given by the map Q. To
achieve our goal in full generality, we need the introduction of a new operator 8, playing
in the lower part of the diagram the same role played by the exterior differentiation 4 in
the upper part.

Definition 5.1. We define the operator § acting on forms over J!(M,) as
di=Ad A

Lemma 5.1. The operator § has the following properties:

& is an antiderivation of degree 1;

(8)* =0

Az =8 Az

8(f)=0<¢ fis (locally) constant ¥V f € C®(J 1 (Mp1));

given an n-form ¢ such that o = 0, there exists an (n — 1)-form 8 such that o = §8.

Proof. The first statement follows from a straightforward calculation. Concerning the
second statement, and using A% = 1, we have

(3)? = (AdAYAdA) = Ad*A = 0.
The third statement follows from lemma 3.1, since
$Az = AdAAz = AdLz A= ALgdA = Az AdA = Azs.
The fourth statement is an immediate consequence of the same property of d. About the
last statement we have that
da=0 & AdAo=0 & dAx=0 & Ao =dy (at least locally).
Since A is an automorphism, there exists 8 such that y = A8, Then we have:
Ax =dAS & a=48.
. |
The following theorems come from corresponding known results regarding the inverse
problem for 2 (see, for example, [SCC87], [SPC30], [CM89], [CLM89]). Since the present

notations and definitions are slightly different from the ones adopted in the references, a
sketchy proof is also presented for the theorems already known.

Theorem 5.2. Let o be a closed 1-form over J1(M,.1) such that Aze € H': then o
determines a local (not necessarily regular) Lagrangian.

Proof We have o = df for some f & C®(J!(M,41)). Then, the condition Aza € H'
becomes

Az (Z( dt + -{’i.wf + B—J_f.v") eH.
aq’ ag*

In \}iew of equations (4), the latter implies the condition

of af _
Z(a—qr) T g C

Comparing with equation (11}, we have the thesis. O
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The paralle] theorem is the following:

Theorem 5.3. Let  be a 1-form over J'(Mp.y) such that £z € H' and S = 0: then o
determines a Iocal (not necessarily regular) Lagrangian,

Progf. Taking into account lemma 5.1, we have (at least locally) &« = §f for some
fec=J 1(M,41)). From definition 5.1 and equations (2), (4), we have that the condition

2 k . ,
Lza=Lg [Z(f)dl‘ — (—-Jf- -+ Ef;'ai) o + a—'f.v‘] eH
dg'  3g* 34" ag

is equivalent to the condition
Z(¥) - ¥
aql aql
Comparing with equation (11), we have the thesis. O
Theorem 5.4. Given f € C®(J1(Mpy1)), let the 1-form f be defined by

af
9f = 3_q'i.ml =+ fdt.

Then we have that
AzLz8; =hdt & Z(f)is a Lagrangian for Z.

Progf. In view of equations (4) we have that

AzLz6; = Z[Z(H]dt + {z [z (i)] +Z (ﬁ) azt

aq'i' aq': aél
dZF\  8f 8zk |
ELZ — - —f""'-"' CrJ:.
aql aq: aqx aq:
The required statement then follows easily by evaluating the commutators
(2, 5] [Z. %] O

As a parallel theorem, we have the following:
Theorem 5.5. Given f € C®(J'(My41)), define 65 = Af. Then we have
LzAz8; =hdt & Z(f)is a Lagrangian for Z.
Proof. Using equations (4), the proof is analogous to the previous one, | |

Remark. Following [MP94], we can consider the operator 4, such thatd, f = %—m", fe

C®(J'(Mp11)). Using this operator we can state the following theorem, similar to the
previous two.

Theorem 5.6. Given a function f € C®(J(M,41)), then

o Lz (d,f) is an adjoint symmetry < Z(f) is a Lagrangian for Z;
o Az(d,f)is adual symmetty & Z(f) is a Lagrangian for Z.
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Proof. It is easy to show that Lz (d, f) is an adjoint symmetry if and only if the condition
AzLz (dy f) = 0 holds. Then equations (4) and a calculation similar to that of theorem
5.2 show the first statement. :

Analogously, we have that Az (d, f) is a dval symmetry if and only if the condition
LzAz (dy f) = 0 holds, and once again the second statement follows from straightforward
calculations. O
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