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The symmetry in the structure of dynamical and adjoint 
symmetries of second-order differential equations 
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t Department of Mathematics, University of Milan, Via Saldini 50,20133 Milano, I U y  
$ Department of Mathematics, UNversity of P- Via DAzeglio 85,43100 P- IUy 

Received 23 November 1994 

Abstract. With each second-order differential equation 2 in the evolution space Jr(Mn+g) 
we associate. using a new differential operator dz. four families of vector fields and I-forms on 
J1(M,+1) providing a natural set-up for the study of symmetries, first integrals and the inverse 
problem for 2. We analyse the relations between the four families pointing out the symmetric 
structue of this set-up. When a Lagrangian for 2 exists, the bijection between dynamical 
and dual symmetries is included in the whole context. suggesting the mmponding  bijection 
between dual-adjoint and adjoint symmetries. As an application, we show how some results of 
the inverse problem can be framed nafurally in this geometrical context. 

1. Introduction 

The problem of the relations between symmetries, first integrals and the existence of a 
Lagrangian for a given second-order differential equation (SODE) 2 defined on the evolution 
space J1(Mn+l) has been discussed in the last 15 years by several authors, using the 
techniques of modem differential geometry (see, for example, [SarSl], [PriS3], [SCCS4], 
[MMSS], [SCCS7], [CM89], [CLM89], [SPCSO]). In particular, in [SCCS7], [CM89], 
[CLM89] and [SPC90] two subsets X,, M ,  of the module of vector fields X(J1(Mn+l)) 
and two subsets X,', M ;  of the module of 1-forms X*(J'(M,+l)) were inmduced. These 
subsets turn out to be particularly useful in handling dynamical and adjoint symmetries 
of the SODE, and provide a natural background for the study of the inverse problem. For 
example (see, e.g., [SPC90]) the sets X, and X,' give a natural environment where the 
concept of self-adjointness of a SODE (strictly related to the existence of a Lagrangian) can 
be framed. 

After a brief section, where for convenience of the reader and in order to fix notation 
we recall the principal definitions and properties of a SODE, in section 3 we introduce a new 
differential operator dz, defined using the almost product structure A on J1(Mn+l) induced 
by 2 and the Lie derivative CZ. This operator allows a useful characterization of the sets 
X,, Xi, M ,  and M;. Moreover the operator dz suggests the introduction of a new type 
of symmetry (called dual adjoint), bearing a relation to dynamical symmetries analogous to 
that between dual and adjoint symmetries. 

We show that a necessary condition for a vector field X to be a dynamical symmetry of 
2 is X E X,, and a necessary condition for X to be a dual-adjoint symmetry is X E M,. 
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In both cases, the sufficient condition takes the form of a 'Jacobi type' equation on X, 
which is exactly the same for dynamical and dual-adjoint symmetries. The case of dual and 
adjoint symmetries is shown to mirror that of dynamical and dual-adjoint symmetries, hut 
with a different 'Jacobi type' equation. Then we prove that the type-(l,l) tensor field A 
induces two bijections, one between dynamical and dual-adjoint symmetries, and the other 
between dual and adjoint ones. 

In section 4 we analyse the case when a Lagrangian for 2 is given. It is well known that 
the presence of a Lagrangian induces a bijection between (equivalence classes of) dynamical 
symmetries and dual symmetries based on the interior product with the Poincar&Cartan 
2-form. The specular situation described above suggests the introduction of a suitable 2- 
form, strictly related to the PoincarMartan 2-form, allowing the construction of a bijection 
between (equivalence classes of) dual-adjoint symmetries and adjoint symmetries. We show 
that the algorithm is naturally enclosed in the geometrical context described above. 

In section 5 ,  as an application, we restate some results regarding the inverse problem that 
find their natural context in terms of the sets X,, M,. X,*, M*.  Moreover, we introduce a 
differential operator 6 defined in terms of the exterior differentlation d in a way analogous 
to the one used to define dz. Using 6, we present some 'parallel' statements that are the 
natural counterpart of the previous ones in the symmetric construction determined by the 
operator dz. 

P Morando ana! S Pasquero 
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2. Preliminaries 

The evolution space of a mechanical system with a finite number of degrees of freedom 
may be identified with the first jet-extension J'(Mntl) of a (n + 1)-dimensional manifold 
Mntl globally fibred over the real line R, so that we have 

t 
J'Mt1) -rr, hfnt1 + R. 

A system of second-order differential equations (SODE) may be represented by a vector field 
2 such that 

( Z , d t ) = l  ( Z , w ' ) = O  i = l ,  ..., n 
where w' = dq' - 4'dt are the contact 1-forms of J'(Mntl). Using fibred coordinates 
( t ,  q ,  4) on J1(Mn+l), the vector field 2 locally takes the form 

a a a z=-  + 4'- + Z'- 
at 84' 84' 

so that its integral curves are the first prolongations of the solutions of the system of 
differential equations 

p' = Z'(t, 4.4). 

Later on we shall use as local basis of the module X(J1(Mn+l)) of the vector fields over 
J1(Mn+,) the hasis (2. &, *],i=l,,,..n, and, for the module X*(J1(Mntl)) of the 1-forms 
over J1(M,+,),  the dual basis (dt, w', ~ ' } i = l , . . . , ~ ,  where U' = LZO' = d$ - Z'dt. 

The fibration x : J1(Mn+l) + MntI determines a subbundle V(J1(MntI)) of 
T(J'(M.+,))  given by the totality of vectors vertical with respect to x .  The submodule 
V of the vertical vector fields is then spanned locally by { &]i=l,,,,,n. For later use, for 
a given SODE, we also introduce the submodule V' of the 'weakly' vertical vector fields, 
spanned locally by { Z  %]i=l ,....". 
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In an analogous way, we can introduce the submodule 71 of the horizontal I-forms, 
spanned locally by the contact forms [0')~=1....,. , and tbe submodule 'H' of 'weakly' 
horizontal 1-forms, spanned locally by {dt, ~ ' ] i = ~  ...., n. 

It is well known that the space J1(Mn+I)  carries a vertical endomorphism, i.e. a globally 
defined type-(1, 1) tensor field given, in local coordinates, by 

a 
S = - @ d .  a? 

Thetype-(1, l)tensorfieldS=CzSisanf(3, -l)structureforJ'(M.+,),i.e.atype-(l, 1) 
non-null tensor field of constant rank satisfying s' - 3 

Using local coordinates, the tensor S takes the form 
0 (see, for example, [dLR90]). 

and, in particular, we have that 

S 2 = I  - Z@dt. 

Remark. As is shown, for example, in [dLR90] and wP941, the f (3, -1) structure allows 
the introduction of some other structures on J1(M,+l) (connection and covariant derivative, 
horizontal distribution of vector fields, vertical distribution of 1-forms, . . .). In order to keep 
the arguments as straightforward as possible, we shall avoid the introduction of different 
bases, operators, etc, and choose to work in the simpler context described above. 

3. The symmetries of a SODE 

The vertical endomorphism S allows us to introduce an 'almost product' structure A on 
J1(Mn+I) (i.e. type-(l,l) tensor fields obeying the condition A' = I ) ,  given by 

A = S  + Z @ d t .  

Note that the tensor S - Z @ d t  is also 'almost product' structure. It could be substituted 
for A throughout the following discussion, but this would make no essential difference. 

For notational convenience, we need to distinguish between the tensor field, for which 
we shall use the standard typeface A,  and the associated operator on X(J1(Mn+I)) and 
X*(J1(Mn+l)), for which we shall use the bold italic A. 

The operator A determines in an obvious way automorphisms of the modules 
X(J1(M,+l)) and X*(ll(Me+l)). It is easy to show that the restrictions of these 
automorphisms to the submodules spanned by 2 and dt, and the submodules V ,  'H,~Y'. 'H' 
are automorphisms, too. 

We extend the action of A to the entire tensor algebra of J'(M,+,) by requiring that 
the conditions 

A ( f )  = f V f E C"(J'(Mn+d) (2) 

A(U 8 W )  = (AU) @ (AW) V U ,  W tensors over J1(M,+l). (3) 
be satisfied.~ The presence of the automorphism A allows the following. 

Definition 3.1. We define the operator Az acting on tensor fields over J'(M.+l) as 

A z = A C z  A. 
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Lemmu 3.1. The operator dz has the following properties. 

P Morundo and S Pusquero 

Az is a derivation of degree 0 commuting with contractions, i.e. V X E X(J'(M,+,)), 
q form over J'(M,+,) we have 

d z  ( X J v )  = (dzx) Jrl + XJ (Azo) 
dzf = z(f) V f e Cm(J'(Mn+i)): 
C z = A d z A .  

Proof: The first statement follows from a straightforward calculation. The second one 
is a consequence of equation (2), while the third one is a consequence of the condition 
A' = U. 0 

For later use, we evaluate the effect of the operators A, CZ, dz on the generic vector 
field X = xoZ+xi$  +yi$ and the generic 1-form ff = aodt+nioi+6iv' on J'(M,,+l). 
We have 

A ( X ) = x  0 

(4fi 
The first result about the operator dz, showing that the latter does not introduce a new 

f (3, -1) structure, is the following theorem. 

Theorem 3.2. Let Z be a SODE S the tensor field of equation (1). Then 

AzS = -S. 

ProoJ We have, using definition 3.1, 

AzS = ( A  Cz A) S = ( A  Cz A) 
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The operators LZ and dz allow the introduction of two subsets of X(J1(Mn+l ) )  and 
two subsets of X*(J1(M,+l)), defined by 

X ,  = [ X  E X ( J 1 ( M n + i ) ) [  X AzV, V E V ']  

~ M ,  = { X ~ E  X ( J 1 ( M n + d ) l  X = LzV. V E V'] 

( 5 4  

(5b) 

(5c) 

( 5 4  
Taking into account equations (4), the local expressions for the elements of the four spaces 
are the following: 

x; = [CY E x*(J1(M"+I))I a! = 1328, B E X'} 
MZ [a! E X*(J1(Mn+i))I 01 = AzB, F E  X'}  . 

X E X ,  U X = A z  

a a 
= Z(X0)Z + x i -  + Z(x')- 

341 a$ ( 6 4  

X E M ,  U X = L z  

a! E U (Y = Lz (aodr +aimi) 

= Z(ao)dt + Z(ui)o' f a id  

01 E M i  U (Y = Az (Qdt + aimi) 

(64 ( a z k )  84' 
= Z(ao)dt + Z(ai) + ak- ai - a i d .  

The following theorem gives a characterization of the spaces X,, M,, X;, M f .  

Theorem 3.3. Let X E X(J1 (Ma+l ) )  be a vector field, and a! E X*(J ' (Mn+l) )  be a I-form, 
Then: 

X E X ,  U L Z X E V '  

X E M ,  U A z X E V '  

( Y E X ;  U AzuE'H' 
( Y E M ;  U L ~ U E W .  

PmoJ Using equations (4), (6),  the proof reduces to a straightforward calculation. 0 
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Remark. The sets X,, X i  were ineoduced by Sarlet et ai [SCC841, while the sets M,, M', 
were introduced by Cariiiena, Lopez and Martinez [CM89], ICLMS91, in slightly different 
contexts and ways. However, the local expressions for the elements of X,, M,,  X;, M ;  
presented in [SCCS4], [CM891 and [CLM89] are equal, or at least quite similar, to those 
of equations (6), so we have adopted the same notation. 

Defvtifion3.2. Let Z be a given SODE, X E X(J1(Mn+l ) )  a vector field and a E 
X*(J'(M,+l)) a 1-form. Then 

X i s  a dynamical symmetry for Z if LzX = hZ,  h E Cm(J'(Mn+l)); 
X i s  a dual-adjoint symmetry for Z if dzX = h Z ,  h E C m ( J 1 ( M n + ~ ) ) ;  
a is a dual symmetry for 2 if Cza = hdt ,  h E Cm(J'(M,+1)); 
a is an adjoint symmetry for Z if dza  = hdt ,  h E Cm(J1(M,+l)). 

Using definition 3.2, and equations (4H6), a straightforward calculation shows that the 
condition for a vector field X = x o Z  + x i  =$ + yi & to be a dynamical symmetry for Z is 
equivalent to the two conditions X E X ,  and 

P Morando and S Pasquero 

In a similar way, it may be seen that X is a dual-adjoint symmetry if and only if X E M ,  
and the components x i  obey equation (7). 

Moreover, a I-form a = mdt + a i d  +bid is a dual symmetry if and only if a E M ;  
and 

while a is an adjoint symmetry if and only if a E X,* and the components bi obey equation 
(8). 

Equations (7) and (8) are. the 'Jacobi-type' equations we referred to in section 1. Note 
that equation (8 )  is precisely the characterization of the adjoint symmetries as presented, 
for example, in [SCC84]. 

To prove one of the main results of this paper, we need two lemmas. 

Lemma 3.4. The operator A gives a bijection between X, and M ,  and between X; and 
M;. 

Proox We have that 

X EX, + LzX E VI+ (AdzA)X E VI+ dzAX E V' + AX E M ,  

where we have used the fact that A is an automorphism of V'.  In the same way we have 
that: 

X E M ,  + dzX E V' =+ (ACzA)X E V' + Cz AX E V' + AX E X,. 

The first statement follows from A' = P. The statement about 1-forms can be proved in 
the same way. 0 
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Corollary 3.5. Given a vector field X ,  the following conditions hold 

C Z X E M ,  o d z A X E X ,  
czx E x, e> A z A X E M ,  
d z X E M z  o C Z A X E X ,  
dzX E X,  e> C Z A X E M ,  

and analogous conditions hold for a 1-form a. 

Lemma 3.6. We have that 

C z d z X E V '  o d z C z X E V '  
C z d z a  E 'H' + AzCzcr E K .  

Pro05 From equations (4), the condition C z d z X  E V' is equivalent to 

while the condition d z C z X  E V' is equivalent to 
,az' ,azi azi 

z [ Z ( X ' )  - Y'] + Z(y9 - x - - y - - [ Z ( X k )  - y ] - = 0 a4k a4k a 4' 
so we have the first statement. The second one can be proved analogously. 0 

Now we can prove the following theorem. 

Theorem 3.7. Let Z be a SODE and X = x o Z  + xi=+ + yi& be a vector field over 
J1(Mncl) ;  the following conditions are equivalent: 

(1) X is a dynamical symmetry for Z; 
(2) X E X, and C z X  E X,; 
(3) A X  E M ,  and &(AX) E M,; 
(4) A X  is a dual-adjoint symmetry for 2; 
(5) AX E M ,  and .Cz(AX) E M,; 
(6)  X E X, and dzX E X,. 

Proof: 
I +2. If X is a dynamical symmetry, then L z X  = hZ E V, and then X E X,. Moreover 
we have 

cz (CZX)  = LZ(h2)  = Z(h)Z E V', 
and, using the characterization of X,, we can conclude this part. 

2 + 3. This follows immediately from lemma 3.4 and corollary 3.5. 

3 +4. Setting Y = AX = toZ  + ti 6 + vi&, the conditions for Y to be a dual-adjoint 
symmetry are 
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In view of equations (4), the condition Y E M,, equivalent to A z Y  E V’, implies the first 
equation of (9). Moreover the condition d z Y  E M,, implies that 

P M o r d o  and S Pmquero 

from which we obtain the second equation of (9). 

4 + 5. Setting Y = A X  = toZ + ?$ + vis, we have d z Y  = h Z  E V’, whence 
Y E M,. Moreover we also have 

C z d z Y  = Cz(hZ) E V”. 
Applying lemma 3.6, we obtain A z C z Y  E V’. and so LzY E M,. 
5 =+ 6. It is sufficient to apply lemma 3.4 and corollary 3.5. 

6 j 1. The conditions for X to be a dynamical symmetry are 

I Z ( X ’ )  - y’  = 0; 
. ,az‘ ,az‘ 

Z ( y ’ )  - x - - y - = 0. I aqk a 4 k  

In view of equations (4). the condition X E X,, equivalent to C Z X  E V’, implies the first 
equation of (10). Moreover the condition d z X  E X,, equivalent to & d z X  E V‘, implies, 
using lemma 3.6, that d z L z X  E V’. Then 

AZ Z(XO)Z+ Z(y ’ )  --x - - y - - E V‘ [ (  k a z i  aqk a q k  aq.‘ a 1 
from which we obtain the second equation of (10). 0 

Theorem 3.8. Let 2 be a SODE and 4 = q d t  +ai@’ +bid be a 1-form over J’(M.+l); 
the following conditions are equivalent: 

(1) 01 is an adjoint symmetry for 2, 

(3) ALY E M ;  and d z ( A r u )  E MZ; 
(4) ALY is a dual symmetry for 2 
(5 )  ALY E Mf, and CZ(A(Y)  E M ; ;  

(2) (Y E X; and CZLY E Xz; 

(6) (Y EX,’ and dza E Xi. 

Proof. The proof follows the same lines as the previous one, and is left to the reader. 0 

4. The symmetry of the symmetries 

It is well known (see, for example, [SCC87], [CM89]) that the knowledge of a regular 
Lagrangian for the SODE 2. i.e. a function L E Cm(J1(M,+1)) such that the equations 

z ( $ )  - $ = o  a L  

determine the SODE uniquely, induces a bijection between (equivalence classes of) dynamical 
symmetries and dual symmetries. 

We say that two dynamical symmetries X I ,  Xz are equivalent if X1 - X z  is a multiple of 
Z, it is known (see, for example, [SPC90]) that in each equivalence class there is an element 
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X such that L z X  = 0. Given a regular Lagrangian L, we can construct the Poincar6-Cartan 
1-form 0, and the corresponding PoincarLCartan 2-form 52, of maximum rank, defined as 

Using the condition LzQ = 0 it is easy to show the following known result. 

Theorem 4.1. The application Ai2 : X(J'(Mn+l)) + X*(J'(Mn+,)) defined by X -+ 

XA52 maps every dynamical symmetry of 2 into a corresponding dual symmetry. 
I Moreover, for every dual symmetry 01 there exists a unique equivalence class of dynamical 

symmetries [XI such that X J 5 2  = LY V X E [XI .  

In our context, we can state a parallel theorem regarding dual-adjoint and adjoint 
symmetries. To reach this aim, we need the following lemma. 

Lemmn 4.2. We have 

X - l p  = A [ ( A X ) _ I ( A q ) ]  V X E X(J1(Mn+l)) V p form over J1(M.+1), 

ProoJ A straightforward calculation shows that, V X E X(J1(Mn+l)), the operator X J A  
such that 

X J A ~  = A [ ( A X ) J ( A p ) ]  V p form over J1(Me+l)  

is an antiderivation of degree -1. Then it is sufficient to show that the operators X J  
and XJA. act in the same way on functions and on. I-forms (see, for example, [dLRgOl). 
The actions on functions are both identically zero. About the actions on 1-forms, given 
X = x o Z  +.xi+ + y i $  and p = m d t  +aim' + b i d ,  we have 

~ X J A ~  = A [ [ x o Z  - xi- a + ( y i  - x ' g )  azi U] a J [aodt 

. 

- (ai + b k z )  aqg oi + b iu i ] )  = X J q .  

U 

We say that two dual-adjoint symmetries X I ,  X z  are equivalent if XI - X z  is a multiple 
of 2, and we have that in each equivalence class there is an element X such that &X = 0. 
Then we have the following theorem. 

Theorem 4.3. Let 52 be the PoincarMartan 2-form determined by the Lagrangian L, and 
defines = An. ThenH = -Q,'and theapplicationJs : X(J'(M,+I)) + X*(J1(M.+1)) 
defined by X c) X J H  maps every dud-adjoint symmetry of 2 into a corresponding adjoint 
symmetry. Moreover, for every adjoint symmetry 01 there exists a unique equivalence class 
of dud-adjoint symmelries [XI such that X-IV = LY V-X E [XI. 
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Proof: The fact that = 42 is a straightforward calculation. Then has maximum rank 
and the kernel of the map JE is generated by Z .  Now, given a dual-adjoint symmetry X ,  
we can suppose AzX = 0. Then consider the I-form a = XJQ. We have 

dza = dz ( X J q  = (AzX) J3+ XJ (&E) = XJ (ALzQ) = 0. 

P Morando and S Pasquero 

Conversely, given an adjoint symmetry a, we can consider X ,  such that X , J 3  = a. 
We have already shown that such an X ,  always exists and that it is determined uniquely 
up to a term of type hZ.  Then we have 

0 = &(a) = dz = (AzX,) J3 + X,J (AzE) . 

Since dza = ALzQ = 0, we obtain (AzX,) Jz = 0, so that &Xu = hZ.  0 

We conclude this section with the following theorem. 

Theorem 4.4. Given a SODE Z ,  the diagram 

JS2 
[Dynamical symmetries] += [Dual symmetries] 

A t  S A  (12) 
[Dual-adjoint symmetries} += [Adjoint symmetries) 

Ai3 

is commutative, where the arrows $ indicate bijections up to equivalence classes. 

Proof: It is sufficient to show that, starting from an element in one corner of the diagram, 
we can reach the element in the opposite corner in both ways, obtaining the same element. 

Given a dynamical symmetry X ,  the 1-form a = X J Q  is a dual symmetry and 
A(XJS2) is an adjoint symmetry. On the other hand, starting from X ,  we have that 
AX is a dual-adjoint symmetry and (AX)JE is an adjoint symmetry. We claim that the 
two adjoint symmetries are the same. In fact, using lemma 4.2, we have 

( A X ) J s  = A ([A(Ax)l J [A(AQ)]] = A (XJS2) . 

Given a dual-adjoint symmetry X ,  the proof that (AX)JQ and A ( X J q  are the same 
dual symmetry is analogous to the previous one, and is left to the reader. 

Given a dual symmetry a, Aa is an adjoint symmetry, and the (equivalence class of) 
vector field(s) X A ~  defined by the condition X h d a  = Aa is a dual-adjoint symmetry. 
On the other side, starting from a, we have that the (equivalence class of) vector field(s) 
X .  defined by the condition X,J S2 = a is a dynamical symmetry, so that AX, is a dual- 
adjoint symmetry. We claim that the two dual-adjoint symmetries coincide. In fact, using 
lemma 4.2, we have 

( A X ~ ) J ~  = A ([A(AX,)l J [A(AQ)]] = A (X,JS2) = Aa 

and then AX, and X A .  belong to the same equivalence class of dual-adjoint symmetries. 
Given an adjoint symmetry a, the proof that Xa., defined by the condition X k J O  = 

Aa, and X u ,  defined by the condition X,JZ = a, are in the same class of dynamical 
0 symmetries is analogous to the previous one, and is once again left to the reader. 
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5. The parallel theorems 

The symmetric structure of the diagram (12) suggests the formulation of new theorems 
transfening to the lower part of the diagram already known results regarding the upper 
part. An example of this parallelism has already been given in the description of the 
correspondence between dual-adjoint and adjoint symmetries given by the map _IS. To 
achieve our goal in full generality, we need the introduction of a new operator 6, playing 
in the lower part of the diagram the same role played by the exterior differentiation d in 
the upper part. 

Definition 5.1. We define the operator 6 acting on forms over J1(Mn+l) as 

S = A d A .  

Lemma 5.1. The operator 8 has the following properties: 
6 is an antiderivation of degree 1; 

0 (S)* =o; 

0 6 ( f )  = 0 f is (locally) constant 'J f E Cm(J1(Mn+l)); 
0 given an n-form a such that 6a = 0, there exists an (n - 1)-form fi  such that a = Sg. 
Pro03 The first statement follows from a straightforward calculation. Concerning the 
second statement, and using AZ = P, we have 

(6)' = (AdA)(AdA) = AdZA = 0. 
The third statement follows from lemma 3.1, since 

Sdz = AdAAz = AdLzA = ALzdA = AzAdA = AzS. 
The fourth statement is an immediate consequence of the same property of d. About the 
last statement we have that 

A z S = S A z ;  

Sa = 0 AdAa = 0 i )  dAa = 0 i )  Aa = d y  (at least locally). 
Since A is an automorphism, there exists p such that y = AS. Then we have: 

Aa=dAP i )  a=SP. 
0 

The following theorems come from corresponding known results regarding the inverse 
problem for Z (see, for example, [SCC87], [SPCSO], [CM89], [CLM89]). Since the present 
notations and definitions are slightly different from the ones adopted in the references, a 
sketchy proof is also presented for the theorems already known. 

Theorem5.2. Let a be a closed I-form over J'(Mn+l) such that d z a  E X': then a 
determines a local (not necessarily regular) Lagrangian. 

Pro03 We have a = df  for some f E Cm(J1(M,+1)). Then, the condition d z a  E 'H' 
becomes 

In view of equations (4), the latter implies the condition 
a f  z - - - = o .  
aql 

U 
. - ,  

Comparing with equation (ll), we have the thesis. 
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The parallel theorem is the following: 

Theorem 5.3. Let a be a 1-form over J'(M,+l) such that LEU E 'H' and SLY = 0 then LY 

determines a local (not necessarily regular) Lagrangian. 

Prooj Taking into account lemma 5.1, we have (at least locally) (Y = Sf for some 
f E Cm(J1(Mn+l)). From definition 5.1 and equations (2),(4), we have that the condition 

is equivalent to the condition 

Comparing with equation (1 l), we have the thesis. 

Theorem5.4. Given f E Cm(J1(Mn+l)), let the 1-form 0, be defined by 

0 

af i 
a$ e, = -0 + fdt. 

Then we have that 

dzLz@f = hdt # Z( f )  is a Lagrangian for 2. 

Proof: In view of equations (4) we have that 

The required statement then follows easily by evaluating the commutators 

As a paallel theorem, we have the following: 

Theorem 5.5. Given f E Cm(J1(Mn+l)), define 

LZdzgf = hdt + Z(f) is a Lagrangian for 2. 

[ Z ,  $1, [z. 3. 0 

= At?,. Then we have 

Proof: Using equations (4), the proof is analogous to the previous one. 0 

Remark Following [Mp94], we can consider the operator d, such that d, f = $mi ,  f E 

Cm(J1(M,+l)). Using this operator we can state the following theorem, similar to the 
previous two. 

Theorem 5.6. Given a function f E Cm(J1(Mn+~)), then 

Lz (d" f )  is an adjoint symmetry # Z ( f )  is a Lagrangian for Z 
Az (du f )  is a dual symmetry + Z ( f )  is a Lagrangian for 2. 
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ProoJ It is easy to show that LZ (d" f) is an adjoint symmetry if and only if the condition 
AzLz ( d u n  = 0 holds. Then equations (4) and a calculation similar to that of theorem 
5.2 show the first statement. 

Analogously, we  have that Az (d" f) is a dual symmetry if and only if the condition 
Lzdz (d" f) = 0 holds, and once again the second statement follows from straightforward 
calculations. I3 
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